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THE CLASSIFICATION OF 4-DIMENSIONAL P -ADIC FILIFORM LEIBNIZ
ALGEBRAS
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Abstract. In this paper Leibniz algebras over the field of p-adic numbers are investigated and
4-dimensional p-adic filiform Leibniz algebras are classified.
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1. Introduction

The notion of Leibniz algebras was introduced in 90-th by J-L. Loday [6] as a ”non antisym-
metric” generalization of Lie algebras. Later the structure theory of these algebras has been
investigated by various authors [1, 2, 3]. In these papers the Leibniz algebras were considered
over the field of complex numbers. During last decades various mathematical structures have
been considered over the field of p-adic numbers: p-adic functional analysis, p-adic differential
equations, p-adic probability theory, p-adic mathematical physics etc. The present paper is
devoted to study of finite dimensional Leibniz algebras over the field of p-adic numbers.

The classification of low dimensional algebras is an important step in investigation of finite
dimensional algebras. Recall that the description of finite dimensional complex Lie algebras has
been reduced to the classification of nilpotent Lie algebras, which have been completely classified
up to dimension 7. The problem of classification of complex Leibniz algebras has been solved for
dimensions up to 3. The description of 3-dimentional solvable p-adic Leibniz algebras [5] shows
that even in this case the list of 3-dimentional p-adic Leibniz algebras is essentially wider than
in the complex case.

In the present paper we describe p-adic filiform Leibniz algebras of dimension 4. Recall that
in the description of complex filiform Leibniz algebras it was sufficient to consider special type
basis transformations [2]. We modify some results of the complex case in order to describe p-adic
filiform Leibniz algebras.

2. Preliminaries and notations

Let Q be the field of rational numbers and let p be an arbitary but fixed prime number. Each
rational number x 6= 0 is represented in the form x = pγ(x) n

m
, where m ∈ N, and n, γ(x) ∈ Z,

the integers m,n do not have p as a factor, i.e. p - m and p - n.
Equip the field Q by the following p-adic norm

|0|p = 0, |x|p = p−γ(x), x 6= 0.

The norm | |p satisfies the ultrametric inequality |x + y|p ≤ max(|x|p, |y|p), x, y ∈ Q.
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The completion of the field Q in this non archimedean norm forms a field which is called the
field of p-adic numbers and denoted by Qp (see for details [4, 9]).

It is known that each p-adic number x 6= 0 can be uniquely expanded in the following canonical
form

x = pγ(x)(x0 + x1p + x2p
2 + ...)

where γ = γ(x) ∈ Z, xj- integers such that x0 > 0, 0 ≤ xj ≤ p− 1, (j = 1, 2, . . . ).
p-adic numbers x which satisfy |x|p ≤ 1 are called p-adic integers. The set of all p-adic integers

is denote by Zp. p-adic integers x ∈ Zp with |x|p = 1 are called p-adic units in Zp.
Recall that an integer x ∈ Z is said to be quadratic residue modulo p if the equation

x2 ≡ a(mod p)

has a solution x ∈ Z, otherwise a is called a quadratic non residue modulo p.
Now consider a p-adic number a ∈ Qp (a 6= 0) with the canonical expansion

a = pγ(a)(a0 + a1p + ...), a0 > 0, 0 ≤ aj ≤ p− 1, j = 1, 2, ....

Lemma 2.1. [9] The equation
x2 = a

has a solution x ∈ Qp if and only if the following two conditions are satisfied:
1) γ(a) is an even integer,
2) a0 is a quadratic residue modulo p, if p 6= 2; a1 = a2 = 0, if p = 2.

Let η be a p-adic number which is not the square of any p-adic number (i.e. η has no square
root in Qp). Then Lemma 2.1 implies

Corollary 2.1.[9] For p 6= 2, the numbers ε1 = η, ε2 = p, ε3 = pη have no square roots in
Qp. Every p-adic number x can be represented in one of the following four forms:

x = εjy
2
j , 0 ≤ j ≤ 3,

where yj ∈ Qp and ε0 = 1, ε1 = η, ε2 = p, ε3 = pη have no square roots in Qp.
Corollary 2.2.[9] For p = 2, the numbers εj ∈ {2, 3, 5, 6, 7, 10, 14} (1 ≤ j ≤ 7) and their

mutual products have no square roots in the field of 2-adic numbers. Each 2-adic number can be
represented in one of the following eight forms x = εjy

2
j , where ε0 = 1, yj ∈ Qp, 1 ≤ j ≤ 7.

Now let us turn to Leibniz algebras.

Definition 2.1. An algebra L over a field F is said to be a Leibniz algebra if the multiplication
[ , ] in L satisfies the following Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y],

for all x, y, z ∈ L.

It should be noted that if a Leibniz algebra L satisfies the antisymmetricity condition [x, x] = 0
for every x ∈ L, then the Leibniz identity coincides with the Jacobi identity. Therefore Leibniz
algebras are non antisymmetric generalizations of Lie algebras.

Given a Leibniz algebra consider the following sequence:

L1 = L,Lk+1 = [Lk, L], k ≥ 1.

Definition 2.2. An n-dimensional Leibniz algebra L is said to be filiform if dimLi = n − i,
2 ≤ i ≤ n.

It should be noted that this definition agrees with the definition of filiform Lie algebras.
Now define the natural gradation for a filiform Leibniz algebra L.
Put Li = Li/Li+1, then dimL1 = 2 and dimLi = 1, 2 ≤ i ≤ n − 1. Consider the space

grL := L1 ⊕ L2 ⊕ ... ⊕ Ln−1. In view of the inclusions [Li, Lj ] ⊂ Li+j it is easy to see that
[Li, Lj ] ⊂ Li+j , i.e. one has a gradation.
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Definition 2.3. A filiform Leibniz algebra L is said to be naturally graded if L ∼= grL.

From now on we shall consider Leibniz algebra over the field Qp of p-adic numbers, i.e. p-adic
Leibniz algebras.

A careful analysis of the results in [2, 3] and [5] shows that similar to the complex case, the
p-adic filiform Leibniz algebras are divided into three disjoint classes of algebras.

Theorem 2.1. In an arbitrary n-dimensional p-adic filiform Leibniz algebra there exists a
basis {e1, e2, ..., en} such that the multiplication in this basis has one of the following three forms:

a)F 1
n : [e1, e1] = e3, [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[e1, e2] = α4e4 + α5e5 + ... + αn−1en−1 + θen,

[ej , e2] = α4ej+2 + α5ej+3 + ... + αn+2−jen, 2 ≤ j ≤ n− 2,

where αi, θ ∈ Qp and the omitted of products are equal to zero;

b)F 2
n : [e1, e1] = e3, [ei, e1] = ei+1, 3 ≤ i ≤ n− 1,

[e1, e2] = β4e4 + β5e5 + ... + βnen, [e2, e2] = γen

[ej , e2] = β4ej+2 + β5ej+3 + ... + βn+2−jen, 3 ≤ j ≤ n− 2,

where βi, γ ∈ Qp and the omitted products being zero;

c)F 3
n : [ei, e1] = ei+1, 2 ≤ i ≤ n− 1,

[e1, ei+1] = −ei+1 3 ≤ i ≤ n− 1,

[e1, e1] = θ1en, [e1, e2] = −e3 + θ2en, [e2, e2] = θ3,

[e2, ej ] = −[ej , e2] ∈ {ej+2, ej+3, ..., en} 3 ≤ j ≤ n− 2,

[ei, ej ] = −[ej , ei] ∈ {ei+j , ei+j+1, ..., en} 3 ≤ i ≤ [
n

2
], i ≤ j ≤ n− i,

where θi ∈ Qp and the above products satisfy the Leibniz identity.

Definition 2.4. Define the following types of basis transformation:

ϑ(a, b) =





f(e1) = ae1 + be2,
f(e2) = (a + b)e2 + b(θ − αn)en−1,
f(ei+1) = [f(ei), f(e1)], 2 ≤ i ≤ n− 1,
f(e3) = [f(e1), f(e1)], a(a + b) 6= 0,

δ(a, b, d) =





f(e1) = a1e1 + b1e2,

f(e2) = de2 − bdγ

a
en−1,

f(ei+1) = [f(ei), f(e1)], 3 ≤ i ≤ n− 1,
f(e3) = [f(e1), f(e1)], ad 6= 0,

where a, b, d ∈ Qp.

The investigation of filiform Leibniz algebras over the field of p-adic numbers similarly to the
complex case can be reduced to the study of the transformations ϑ and δ respectively for the
first and the second classes of algebras from Theorem 2.1.

3. Classification of 4-dimensional p-adic filiform Leibniz algebras

Let η be a p-adic unit, which has no square root in Qp.

Lemma 3.1. For any p ≥ 3 the square root
√

4 + p2ε exists in Qp, where ε ∈ {1, η, p, pη}.
The square root

√
4 + 82ε exists in Q2, where ε ∈ {1, 2, 3, 5, 6, 7, 10, 14}.
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Proof. Let p ≥ 3. We have to show that
√

4 + p2ε exists in Qp, where ε ∈ {1, η, p, pη}.
Consider the canonical expansion of the number ε:

ε = pγ(ε)(ε0 + ε1p + ε2p
2 + ...), (1)

where γ(ε) ∈ Z, ε0 > 0, ε ∈ {0, 1, 2, ..., p− 1}, i = 0, 1, ....
Then

4 + p2ε = 4 + p2+γ(ε)(ε0 + ε1p + ε2p
2 + ...). (2)

If p 6= 2, ε ∈ {1, η, p, ηp}, the numbers 1 and η are p-adic units, i.e. |1|p = |η|p = 1. Therefore

the numbers p and pη are integers and |p|p = |ηp|p =
1
p
. Since p and ηp are p-adic integers, γ(ε)

is equal either to 0 or to 1.
Let p = 3. Then rewrite the expansion (2) in the form:

4 + 32ε = 1 + 3 + 32+γ(ε)(ε0 + ε13 + ε232 + ...).

By Lemma 2.1 the equation x2 ≡ 1(mod 3) is solvable in Z, namely x = 3N + 1, N ∈ Z.

Therefore
√

4 + p2ε exists in Qp.
Let p ≥ 5, then

4 + p2ε = 4 + p2+γ(ε)(ε0 + ε1p + ε2p
2 + ...).

Lemma 2.1 implies that the equation x2 ≡ 4(mod p) has a solution in Z, namely x = pN +2,

N ∈ Z. Therefore
√

4 + p2ε exists in Qp.

Let p = 2 and let us show that
√

4 + 82ε exists in Qp, where ε ∈ {1, 2, 3, 5, 6, 7, 10, 14}. Since 1,

3, 5, 7 are p-adic units and 2, 6, 10, 14 are p-adic integers (|2|p = |6|p = |10|p = |14|p =
1
2

< 1),
we have that in the expansion

ε = pγ(ε)(ε0 + ε1p + ε2p
2 + ...),

the integer γ(ε) is equal either to 0 or to 1. Therefore the existence of
√

4 + 82ε follows from
Lemma 2.1.

Now recall the notion of decomposable Leibniz algebra. An algebra L is said to be decom-
posable, if there exist two subalgebras N and M in L such that L = M ⊕ N and [M, N ] =
[N,M ] = {0}. Therefore the classification of decomposable Leibniz algebras can be reduced
to lower dimensional cases. So from now on we shall consider only non decomposable Leibniz
algebras.

The following theorem gives a classification of non decomposable 4-dimensional p-adic filiform
Leibniz algebras.

Theorem 3.1. An arbitrary 4-dimensional filiform non decomposable Leibniz algebra is isomor-
phic to one of the following pairwise non-isomorphic algebras:

L1 : [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = e3, [e3, e1] = e4,
L2 : [e1, e1] = e3, [e2, e1] = e3, [e3, e1] = e4,
L3 : [e1, e1] = e3, [e1, e2] = e4, [e3, e1] = e4,
L4 : [e1, e1] = e3, [e2, e1] = e3, [e1, e2] = e4, [e3, e1] = e4,

[e2, e2] = e4,
L5 : [e1, e1] = e3, [e2, e1] = e3, [e3, e1] = e4, [e2, e2] = e4,
L6(ε) : [e1, e1] = e3, [e3, e1] = e4, [e2, e2] = εe4,
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L7 : [e2, e1] = e3, [e1, e2] = −e3, [e3, e1] = e4, [e1, e3] = −e4,
L8 : [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3,

[e1, e3] = −e4,
L9 : [e1, e1] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3 + e4,

[e1, e3] = −e4,
L10 : [e1, e1] = e4, [e2, e2] = e4, [e2, e1] = e3, [e1, e2] = −e3 + 2e4,

[e3, e1] = e4, [e1, e3] = −e4,

L11(ε) : [e1, e1] = e4, [e2, e2] = e4, [e2, e1] = e3, [e1, e2] = −e3 +
√

4 + α2εe4,
[e3, e1] = e4, [e1, e3] = −e4,

where α = p and ε ∈ {1, η, p, pη} if p 6= 2; α = 8 and ε ∈ {1, 2, 3, 5, 6, 7, 10, 14} if p = 2.

Proof. Let L be a 4-dimensional p-adic filiform Leibniz algebra. By Theorem 2.1 there exists
a basis {e1, e2, e3, e4} in which the algebra has one of the following three forms:

F 1
n : [e1, e1] = e3, [e1, e2] = e4, [e2, e1] = e3, [e2, e2] = e4, [e3, e1] = e4.

F 2
n : [e1, e1] = e3, [e1, e2] = e4, [e2, e2] = e4, [e3, e1] = e4.

F 3
n : [e1, e1] = e4, [e2, e2] = e4, [e2, e1] = e3, [e3, e1] = e4, [e1, e2] = −e3 + e4,

[e1, e3] = −e4.

Consider the algebra F 1
4 . Based on properties of the transformations ϑ and δ from Theorem

2.1 consider the following change of the basis:
e′1 = ae1 + be2,
e′2 = (a + b)e2 + b(α− β)e3,
e′3 = [e′2, e

′
1] = [(a + b)e2 + b(α− β)e3, ae1 + be2] = a(a + b)e3 + (a(α− β) + bβ(a + b))e4,

e′4 = [e′3, e
′
1] = [a(a + b)e3 + (a(α− β) + bβ(a + b))e4, ae1 + be2] = a2(a + b)e4,

where a2(a + b) 6= 0.
Writing down the multiplication in the algebra from the class F 1

4 in the new basis, and
comparing the coefficients of the basic elements {e1, e2, e3, e4} we obtain the following relations:

α′a2 = αa + βb and β′a2 = β(a + b).

Case 1 Let β = 0, then β′ = 0 and α′a = α.
If α 6= 0, then putting a = α, we obtain α′ = 1 and come to the algebra L1.
Otherwise, i.e. if α = 0, we have α′ = 0 and obtain the algebra L2.

Case 2. Let β 6= 0. Then putting b =
a2

β
− a, we obtain β′ = 1 and α′ =

a2 + aα− aβ

a2
.

If α = β, then α′ = 1 and we obtain the algebra L3.
If α 6= β, then putting a = β − α we have α′ = 0 and come to the algebra L4.

Now let us consider the class of algebras F 2
4 . By considering the transformations ϑ and δ for

the classes a) and b) from Theorem 2.1 take the change of basis in the form:
e′1 = ae1 + be2,
e′2 = ce2 − ba−1e3,
e′3 = [e′2, e

′
1] = (ae1 + be2)(ce2 − ba−1e3) = a2e3 + b(αa + βb)e4,

e′4 = [e′3, e
′
1] = (a2e3 + b(αa + βb))e4)(ae1 + be2) = a3e4, where a3 6= 0.

Writing down the multiplication in the algebra from the class F 2
4 in the new basis and com-

paring the coefficients of the basic elements {e1, e2, e3, e4} we obtain the following relations:

α′a3 = c(αa + βb) and β′a3 = βc2.

Case 1. Let β = 0. Then β′ = 0 and α′a2 = cα.
If α = 0, then we have α′ = 0 and obtain the algebra with the product

[e1, e1] = e3, [e3, e1] = e4.

It is easy to see that this algebra is decomposable.
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If α 6= 0, then putting c =
a2

α
, we have α′ = 1 and we obtain the algebra L5.

Case 2. Let β 6= 0. By Corollaries 2.1 and 2.2 the parameter
β

a3
can be represented in

the form
β

a3
= εy2

j . If we take c =
1
yj

, then β′ = ε, where ε ∈ {1, η, p, pη} if p 6= 2; and

ε ∈ {1, 2, 3, 5, 6, 7, 10, 14} if p = 2. Thus we obtain the algebras L6(ε), which are mutually non
isomorphic for different ε.

Now consider the third class of algebras F 3
4 .

If (α, β, γ) = (0, 0, 0), then this algebra is a Lie algebra and we have the case L7.
Suppose that (α, β, γ) 6= (0, 0, 0). If α = 0, then (β, γ) 6= (0, 0) and by changing the basis as

e′1 = e1 + Ae2 we have [e1, e1] = A(β + Aγ)e4 6= 0, i.e. given any β, γ there exists A 6= 0 such
that β + Aγ 6= 0. Therefore without loss of generality we may assume that α 6= 0.

So let α 6= 0. Then by changing the basis as

e′1 = αe1, e
′
2 = αe1, e

′
3 = α2e3, e

′
4 = α3e4,

we obtain α = 1 and the multiplication has the form

[e1, e1] = e4, [e2, e1] = e3, [e2, e2] = αe4, [e1, e2] = −e3 + βe4,

[e3, e1] = −[e1, e3] = e4. (3)
Let us consider the problem of mutual isomorphism of algebras from this family. Take a

general change of basis:
e′1 = A1e1 + A2e2 + A3e3,
e′2 = B1e1 + B2e2 + B3e3,
e′3 = [e′2, e

′
1] = [B1e1+B2e2+B3e3, A1e1+A2e2+A3e3] = (A1B2−A2B1)e3+(A1B1+A1B3+

βA2B1 + αA2B2 −A3B1)e4,
e′4 = [e′3, e

′
1] = [(A1B2−A2B1)e3 +(A1B1 +A1B3 +βA2B1 +αA2B2−A3B1)e4, A1e1 +A2e2 +

A3e3] = A1(A1B2 −A2B1)e4, where A1(A1B2 −B1A1) 6= 0.
Writing down the multiplication in the algebra from the family (3) in the new basis and

comparing the coefficients of the basic elements {e1, e2, e3, e4}, we obtain the following relations:

A2
1 + βA1A2 + αA2

2 = A2
1B2, B1 = 0, A2

1B2 6= 0,

α′ =
B2α

A2
1

, β′ =
A1β + 2A2α

A2
1

.

It is easy to calculate that

β′2 − 4α′ =
1

A2
1

(β2 − 4α).

Case 1. Let α = 0, then α′ = 0.
Subcase 1.1. If β = 0, then β′ = 0 and we obtain the algebra L8.
Subcase 1.2. If β 6= 0, then putting A1 = β, B2 = 1, A2 = 0 we have β′ = 1 and we come

to the algebra L9.

Case 2. Let α 6= 0. Then putting B2 =
A2

1

α
, we obtain α′ = 1.

Subcase 2.1. If β2− 4α = 0, then putting A2 =
1
2α

(2A2
1−A1β) and A1 6= 0, we have β′ = 2

and obtain the algebra L10.
Subcase 2.2. If β2 − 4α 6= 0, then by Corollaries 2.1 and 2.2 it follows that β2 − 4α

can be represented as β2 − 4α = εy2
j , where yj ∈ Qp. Since the square roots

√
4 + p2ε and√

4 + 82ε exist respectively in Qp and Q2 by Lemma 3.1, then by putting A1 =
yj

α
and A2 =
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1
2β

(
y2

j

α2

√
4 + p2ε − γ

yj

α
), we obtain γ′ =

√
4 + p2ε, where ε ∈ {1, η, p, ηp} for p 6= 2. If = 2,

then by putting A1 =
yj

α
and A2 =

1
2β

(
y2

j

α2

√
4 + 82ε − γ

yj

α
), we obtain γ′ =

√
4 + 82ε, where

ε ∈ {1, 2, 3, 5, 6, 7, 10, 14}. Therefore we have the algebra L11(ε). The proof of Theorem 3.1 is
complete.

Remark. In the complex case one has almost a similar list of 4-dimensional filiform Leibniz
algebras [1]. The main difference is that in the p-adic case we have two additional algebras L6(ε)
and L11(ε).
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